
How S4 Methods Work

John Chambers

August 30, 2006

1 Methods and Classes; Functions and Objects

Methods and classes in the S language are essentially programming concepts to enable good or-
ganization of functions and of general objects, respectively. Programming in R starts out usually
as writing functions, at least once we get past the strict cut-and-paste stage. Functions are the
actions of the language; calls to them express what the user wants to happen. The arguments to
the functions and the values returned by function calls are the objects. These objects represent
everything we deal with. Actions create new objects (such as summaries and models) or present
the information in the objects (by plots, printed summaries, or interfaces to other software). R is a
functional, object-based system where users program to extend the capacity of the system in terms
of new functionality and new kinds of objects.

Once programming in R reaches a moderately ambitious level, the total complexity of the added
functionality can start to obscure what the software is doing. And the information in the objects
may need some clear structure.

The purpose of the method- and class-related software, usually referred to as S4 methods and
classes, is to organize such software into individual pieces, specifically method and class definitions.
The pieces have two important properties: Their range of application is limited, so that they can
make a clear statement about a strictly limited part of the program design; and they come with
self-description, in the sense of metadata that allows the software itself to examine the methods
and classes.

This document discusses how the information describing methods and classes is used during an R

session. The important computations are function calls, since nearly everything that happens in
R occurs through a function call. Although the title talks about methods, and for programmers
it’s the construction of methods (and classes) that occupies most attention, the way to understand
how things work is to see functions and classes as the prime organizing principles. Methods are
the connectors that join the two together, and the essential understanding of “how it works” comes
from the rules by which the R evaluator selects a method for a particular function call.

1



2 Functions, Classes, and Object-oriented Programming

Since methods and classes were introduced into S in the early 1990s, terms like “object-oriented
programming” have turned up frequently in discussions. The term has many connotations and may
help to orient readers, but it can as easily confuse them, so we need to clarify what it means here.

Languages to which the object-oriented programming (OOP) term is typically applied mostly sup-
port what might better be called class-oriented programming, well-known examples being C++

and Java. In these languages the essential programming unit is the class definition. Objects are
generated as instances of a class and computations on the objects consist of invoking methods on
that object. Depending on how strict the language is, all or most of the computations must be
expressed in this form. Method invocation is an operator, operating on an instance of a class. Soft-
ware organization is essentially simple and hierarchical, in the sense that all methods are defined
as part of a particular class.

That’s not how S works; as mentioned, the first and most important programming unit is the
function. From the user’s perspective, it’s all done by calling functions (even if some of the functions
are hidden in the form of operators). Methods and classes provide not class-oriented programming
but function- and class-oriented programming. It’s a richer view, but also a more complicated one.

The key concept to keep in mind is that function-and-class programming has that two-way, hy-
phenated organization: by functions and by classes. A method no longer “belongs” to a class.
Methods belong primarily to the generic function for which they are defined. To understand how
the computations work, the first organizing principle needed is to think of the generic function as
including all the currently active methods for that function. This does in fact happen during an R

session: A generic function will collect or cache all the methods for that function belonging to all
the R packages that have been loaded in the session. When the function is called, the R evaluator
then selects a method from those available, by examining how well different methods match the
actual arguments in the call.

But this selection shows the greater complexity of the function-class paradigm, compared to the
simpler class paradigm. Each method is stored within the generic function according to its signature,
which we can think of as a named list of classes, with the names corresponding to the formal
arguments of the function. So for a function with arguments x and y (and perhaps others):

> signature(x= "dgCMatrix", y="dgeMatrix")
x y

"dMatrix" "dgeMatrix"

In a call to this function, arguments will have corresponding classes, either the actual class or
"missing" if the argument is missing. The closeness of the actual arguments to the classes in
the signature determines how well the method matches the call. And that closeness in turn is
determined by the definition of the classes involved; the classes can match exactly, or the classes
can match approximately through inheritance.

From the users’ view, the generic function has (or at least should have) a natural definition in terms

2



of what it is intended to do: plot() displays graphics to represent an object or the relation between
two objects; arithmetic operators such as "+" carry out the corresponding intuitive numerical
computations or extensions of those. Methods should map those intuitive notions naturally and
reliably into the concepts represented by the class definitions. The present discussion explains how
a particular set of class and method definitions will be used in computations.

We want to end up with a description of how methods are selected, which can be done by exploring
separately the role of class inheritance and then the matching procedure. We also need to bring in
a third organizing principle, the R package. The next three sections take each of these in turn.

3 Classes and Inheritance

The definition of a class is obtained from a metadata object in some R package. When that definition
becomes available, the definition is then cached for the current R session. It’s this cached version
that concerns us, because it is used to drive method selection and because it can differ slightly from
the metadata object, as we will see.

The class definition contains a definition of the slots in objects from the class and other information
of various kinds, but the most important information for the present discussion defines what other
classes this class extends; that is, the inheritance or to use the most common term, the superclasses
of this class. In R, the names of the superclasses can be seen as the value of extends(thisClass).
By definition, an object from any class can be used in a computation designed for any of the
superclasses of that class. Therefore, it’s precisely the superclasses of the class of an argument that
define candidate methods in a particular function call.

To be precise, if the one of the arguments has class thisClass, then the candidate classes are:

c(thisClass, extends(thisClass), "ANY")

where "ANY" is the universal superclass for all objects. A method with any one of these classes in
its signature corresponding to this argument asserts that the method will work if given an object
from class thisClass, possibly after the object has been coerced to the superclass.

Superclasses can be specified in three ways:

1. Directly in the contains= argument to setClass(), with the result that all the data (that is,
all the slots) of the superclass will be included in this class as well.

2. Through a separate setIs(thisClass, superClass) specification, which may require providing
methods to coerce objects from thisClass to superClass.

3. Through the creation of a class union of which thisClass is a member.

The class union case may cause the cached definition of a class to differ from the original metadata.
For example:

3



setClassUnion("Numbers", c("numeric", "integer", "complex"))

The assertion is that "Numbers" is a superclass of each of the three specified member classes. So if
a method has been defined with "Numbers" in its signature, an actual argument of class "numeric"

can be supplied. Therefore, "Numbers" must be added to the superclasses of the cached definition
of class "numeric", although it was not in the metadata (and even though in this case "numeric"

was sealed, so ordinary computations can’t change its definition).

Superclasses specified in any of the three ways form the direct superclasses of this class. The
superclasses of the superclasses then define all the rest of the inheritance. The names of all these
classes are the value of extends(thisClass). When inheritance is used to select a method, more
than one of the superclasses may provide an alternative. In this case, the evaluator uses a concept
of the distance between the class and a superclass to partially disambiguate the possibilities.

Just how this disambiguation should be done is a matter of opinion, and no solution is likely
to be ideal in all examples. The current R implementation defines the distance as the number
of generations of superclasses involved; that is, direct superclasses have distance 1, their direct
superclasses have distance 2, and so on. In addition the distance to "ANY" is implicitly larger than
the distance to any actual superclass, and a class has 0 distance to itself.

For example, in the Matrix package on CRAN, the class "ddenseMatrix" (for matrices of dou-
bles stored in dense form), contains class "dMatrix" and class "denseMatrix" directly. The class
"dMatrix" contains only class "Matrix" directly, and the same is true of class "denseMatrix"). There-
fore, "ddenseMatrix" contains 3 classes in total: "dMatrix" and "denseMatrix" with distance 1 and
"Matrix" with distance 2.

4 Methods and Generic Functions

Conceptually, a generic function extends the idea of a function in R by allowing different methods
to be selected corresponding to the classes of the objects supplied as arguments in a call to the
function. The generic function should specify:

• The overall purpose and meaning; that is the function being performed, in the informal sense
of that word.

• The formal arguments, along with a signature that specifies which arguments can be used
to select methods.

For a standard generic function the body of the function is just a call to standardGeneric(), asking
the evaluator to select and call a method. Nonstandard generic functions can optionally do some
computations of their own, before and/or after selecting the method. Once the method is selected,
the evaluator creates a context for the call to that method and evaluates the body of the method
in that context, but without re-matching the arguments. Therefore, in principle all methods must
have exactly the same formal arguments as the generic function. Some slight trickery in the call to

4



setMethod() allows methods to insert some new arguments corresponding to the . . . argument in
the generic function.

A generic function also has a signature: The signature of the generic function is an ordered subset
of the formal arguments, by default all the eligible arguments in the order they appear in the
function. When we said that the signature of a method matched a subset of the formal arguments,
it’s really only the arguments in the generic’s signature that are matched. The special argument
. . . is not eligible to be in a signature, since it may not correspond to a single argument with a
well-defined class.

Arguments appearing in the signature of the generic will be evaluated as soon as the generic function
is called; therefore, any arguments that need to take advantage of lazy evaluation must not be in
the signature. These are typically arguments treated literally, often via the substitute() function.
For example, if one wanted to turn substitute() itself into a generic, the first argument, expr,
would not be in the signature since it must not be evaluated but rather treated as a literal.

When a method is to be selected from a call to StandardGeneric(), a class is associated with each of
the arguments in the signature. If that argument is missing the class is "missing"; otherwise, it is
the class of the object supplied as the argument. This list of classes is called the target signature for
the call. All the methods for the generic function are stored in a table (actually an R environment),
also indexed by signatures. This table contains both methods directly defined and also those found
via inheritance on previous calls to the function. The first step in selection is to check for an exact
match in the table; if this succeeds, selection is complete and the evaluator goes on to use the
selected method to evaluate the call to the function.

If no exact match occurs, a search for inherited methods takes place. Possible methods would have
in their signature, for each argument, either the corresponding class in the call or else one of the
superclasses of that class, including "ANY". The search function creates all combinations of such
classes for all the arguments actively involved in the signature, and matches all of them to a table
containing only the directly defined methods. Each of the methods in this table is stored according
to the defined signature, the signature that appeared in the corresponding setMethod() call that
created the method.

The result of the search will be zero, one, or more methods, each of which in principle could be
used. If zero, method selection has failed. If more than one method is selected, the search selects
those that provide the closest match in terms of the distance between the actual class and the
corresponding superclass in the definition of the method. Ties are possible, which the evaluator
regards as ambiguous. It issues a warning and then selects the first method (see the details below).

The selected method is added to the table of all methods, indexed under the target signature.
So further calls with the same target signature will not require another search. Any changes in
the underlying information driving the search could invalidate an inherited selection, however.
Attaching another package having new methods for this generic is such a change. Evaluating a
setMethod() call for this generic is another. When the change occurs, the relevant generic function
is reset, in effect discarding all the inherited selections. Unfortunately, not every change is currently
detected automatically. If, for example, you redefine a class during a session, you are in danger of
still seeing invalidated selections based on the old inheritance pattern: call resetGeneric() explicitly

5



for the functions that use this class to be safe.

That’s the basic picture. The following are details that may occasionally matter.

Comparing methods

The stored distance of each class in the target signature to each of its superclasses defines the
distance of each candidate method, for that argument. Where more than one argument is involved
in selection, there will be a distance for each argument. Method selection must judge some of
the candidates as closer to the target and if ambiguities remain, must either generate an error or
pick one of the tied possibilities. The important point for programming with R is that ambiguous
method selections usually indicate the need to be more specific about method definitions. Any
strategy on the part of the system is likely to be wrong at least some of the time for a particular
application. In particular, the best method to select for one generic function may not be best for
another, when the same inheritance rule is used.

The current implementation (as of version 2.4.0 of R) works as follows. The individual distances, as
explained in section 3, are the number of steps in the path of superclasses between the target and
the defined class, with the distance to "ANY" larger than any other distance. If several arguments
are involved, the distances for each argument are added and the total distance is used to compare
candidate methods. In the case of ties, the first of the candidates is chosen. Because the candidate
signatures are effectively an outer product of the individual superclass lists, and because of the way
those lists are created, the effect is to select the first possible method in an ordering by the order
of superclasses in the "contains" slot of the class definition, ordering first according to the first
argument in the signature, then the second, etc.

For example, class "ddenseMatrix" has two direct superclasses, "dMatrix" and "denseMatrix", ap-
pearing in that order in the class definition. So for an argument with target class "ddenseMatrix",
candidate methods for class "dMatrix" would come first in the list, even though both superclasses
are at distance 1. When a second argument is involved, the combined list of classes is like a matrix
with rows corresponding to the first argument and columns to the second, so the first choice or the
first argument comes first.

This determines the effective ordering of methods, and it probably reflects as reasonable a decision
as any. But again, the important point is that complex disambiguating rules are not the route to
good software: Thinking through the intended method selection is much better.

Even the decision about which methods are ambiguous remains somewhat arbitrary. The current
rule regards all indirect inheritance as farther away than direct inheritance. If the indirection is
through the same superclass, no one could object. But the distinction is not totally convincing
otherwise. For example, class "dgeMatrix" has "generalMatrix" as a direct superclass and "dMatrix"

as a superclass at distance 2. Does this mean that the former is a closer match for methods? Not
necessarily, because the two superclasses have totally different meanings: The first has to do with
the form of the matrix, the second to do with the data type for the entries. Depending on the
function, one might need to inherit via one or the other. Relying on a disambiguating rule would

6



be a bad idea.

Group generic functions

Generic functions can have a group generic defined, meaning another function whose methods are
supposed to work for this function as a special case. For example the function "+" has group generic
function Arith(), which in turn has group generic function Ops(). In selecting a method for "+",
methods for Arith() are candidates for target signatures where there is no corresponding method
for "+", and methods for Ops() are candidates if neither of the other two functions has a method.

This is a second dimension of inheritance, but it is applied in a slightly different way, partly to
conform to the above definition of group generic functions and partly to keep the complexity of
group generic methods from leaking into the more common case where no group generic is defined.

When there is a group function, and an inherited method is needed, the first step is to look for a
direct match to the target signature. For example, suppose the expression x + 1 is being evaluated
with x having class "dgeMatrix" from package Matrix. Then the target signature is "dgeMatrix"

and "numeric". There is no directly defined method for "+" for this combination, but there is for
function Arith(). So the search for an inherited method would return immediately with the group
generic method.

If there is no direct match for a group generic, the inheritance computation proceeds as before,
except that all candidate methods will be matched for the successive group generic functions as
well. For each signature, a group method will be a candidate if there is no corresponding method
for the actual function. So the final set of candidate methods includes group methods on the same
footing, so long as they don’t override directly defined methods. The distance calculations go ahead
as before, but potentially on a larger set of candidates.

Primitive functions

In all discussions of methods, primitive functions unfortunately have to be considered separately.
These are functions in the base package that are evaluated directly in C; there is no object of
type "function" corresponding to them and they have no formal arguments. In principle, however,
method selection works the same for these as for true functions. The only difference is that selection
is initiated by special code inside the R evaluator, rather than through encountering a call to
standardGeneric().

The generic functions for primitives are not directly visible (so that nothing impedes the efficiency
of calls to those functions). You can see the generic, however by calling getGeneric():

> getGeneric("+")
standardGeneric for "+" defined from package "base"
belonging to group(s): Arith

7



function (e1, e2)
standardGeneric("+", .Primitive("+"))
<environment: 0x2b82eb0>
Methods may be defined for arguments: e1, e2

The generic functions corresponding to primitives are kept in a list in the methods package, and
used for method dispatch and other computations, without being assigned in the ordinary way. So
long as computations access the generic function through getGeneric(), most computations should
be unaffected.

One other special behavior required for primitive functions is the interpretation of the default
method. The general rule requires all method objects to be of class "MethodDefinition", or a
subclass of that class. The exception is that the default method for primitive generic functions is
the original primitive object:

> getMethod("+", "ANY")
.Primitive("+")

In fact, the evaluator does not call the primitive again for the default method, since doing so would
create an infinite recursion. Instead, encountering an object of primitive type for a method signals
that there is no method defined for this signature. The internal method search returns a special
reference that tells the calling code in the evaluator to go on with the original built-in definition for
the function. Programmers do need to be careful when working with selected method definitions
to be prepared for a primitive object. It would be possible to use a special form of

Active signature

The signature slot of a generic function determines which arguments may be included in the sig-
nature of a method for that function. By default, and usually the signature consists of all the
arguments, except for . . . , if that is a formal argument, and in the order the arguments appear in
the function definition. For example, the generic function for the subset operator is:

> getGeneric("[")
standardGeneric for "[" defined from package "base"

function (x, i, j, ..., drop)
standardGeneric("[", .Primitive("["))
<environment: 0x2a2207c>
Methods may be defined for arguments: x, i, j, drop

The argument drop to the generic is only relevant for arrays; in addition, the argument j is included
to allow methods to depend on the class of the column index for two-way objects such as matrices
or data frames.

8



In applications that do not involve such objects, it’s likely that neither j or drop would appear in
method signatures. Method selection takes this into account, but keeps the computed results of a
call to "[" from depending on such irrelevant questions. If all the methods currently cached for a
generic involve only the first k of n arguments in the signature, only those k arguments are treated
as active. This means that the indexing in the table only uses these arguments and that you only see
these arguments when calling showMethods(). All the methods then implicitly correspond to class
"ANY" for the remaining arguments, but this information is not explicitly recorded. Some efficiency
advantages for the internal tables result. If all the methods for argument j, say corresponded
implicitly to "ANY", but argument j is included in the active signature, then each target signature
with a distinct class for j has to be found by inheritance and separately cached. If j is not in the
active signature, only distinct signatures for x and i need to be stored.

Note two points about the active signature, however, that are required for consistent semantics:

1. As soon as a method has to be cached that uses one of the currently inactive arguments,
that argument and all preceding arguments have to be added to the active signature, and the
table of cached methods has to be relabeled accordingly. For example, the Matrix package
currently has methods involving all four of the arguments in the signature for "[". If the
currently active signature had involved fewer arguments, then attaching the Matrix package
would result in expanding the active signature.

2. All the arguments in the full signature are evaluated as described above, not just the active
ones. Otherwise, in special circumstances the behavior of the function could change for one
method when another method was cached, definitely undesirable.

5 Packages

A final layer of richness, and inevitably of complications as well, comes from the R package mech-
anism.

A package is a collection of software, written in R and potentially in other languages, plus doc-
umentation and overall descriptions. For the present discussion, packages are important because
they contain descriptions of functions, classes and methods. When a package joins the computa-
tions in an R session by being attached or loaded, the corresponding information is cached by the
R system. Packages consist of a fairly amorphous collection of files; perhaps unfortunately, they
don’t currently have a definition in terms of objects. For our present purpose, they are identified
primarily by a character-string name (methods, lattice, mle, etc.).

Class definitions and generic functions both have a "package" slot that identifies the package in
which they were defined, as a character string. In the case of the generic function this may be the
package from which the original function came. The command

setGeneric("ncol")

9



for example, will create a generic function from the function ncol() in the base package. The
"package" slot in that generic will be "base". This convention reflects the concept that the generic
function retains the functionality of the original, and that methods will be cached in the single
function. Implementation details sometimes deviate, at least in the current implementation, but
this is the intended model.

While the generic function is intended to be associated with one particular package, methods
for that function may be defined in many packages. That’s the dual nature of function-and-
class programming again; a package that defines new classes will naturally define methods that
involve those classes, both for functions that it owns itself and for functions from other packages,
particularly from the base package.

The caching mechanism is activated when a package is loaded, for generic functions in either that
package or other packages. Method definitions in the new package are cached in the generic function.
At present they override an existing method for the same signature, if there is one. In principle,
the method selection mechanism could distinguish methods with the same signature from different
packages (most likely, simply by including the package information as part of the signature). There
is no intrinsic difficulty, but some substantial changes in the current implementation would be
needed.

The namespace mechanism for packages introduces an additional layer of complexity. If a package
has a namespace, the implementer chooses whether or not to emphexport objects from the package;
if a function object is not exported, it is available to calls from other functions in the package,
but is not visible outside of the package. Methods and classes are also part of the namespace
specification. If methods are specified for a generic that is exported from the namespace or that
is part of another package and globally visible, then those methods will be cached in the visible
generic function, behaving more or less normally.

If a package has a generic function that is local and not exported, the natural intention would seem
to be that the methods are cached only in the function local to the namespace. That is true, so
long as the package has been installed with “lazy loading” or some similar mechanism, which you
should do for any non-trivial package in any case. The generic is then not cached in the global
table of generic functions and in particular will not interfere with an identically named generic from
another package. (If the source for your package is run when the package is loaded, however, every
generic function will be cached. Do use lazy loading.)

The case of generic functions defined from functions in the base package is messier still, particularly
in the distinction between primitive functions and other functions in the base package. More details
on this later.

6 Earlier Versions of Method Selection

In versions of R through 2.3.1, method selection proceeded differently, with results that could select
a different inherited method from that described here. The essential differences were that methods
were cached in a hierarchical structure by individual argument in the signature, and that the

10



selection mechanism exited as soon as it encountered an acceptable method. Also, the inheritance
information did not include any distances. The order of search was determined by the order of
superclasses in the class definitions involved. This searched first for direct superclasses of the
argument’s class, in the order these appeared in the "contains" slot of the class definition.

The effect was to select the first eligible method encountered for a superclass for the first argument.
The only really relevant point is that this choice did not always correspond to one of the best
matches according to the distance information. The change to the current algorithm can therefore
change method selection in some situations.

For those who want to understand the grubby details, however, an example will illustrate them,
using version 2.3.1 of R and version 0.995-15 of the Matrix package. That package defines a number
of methods for the matrix multiplication operator, "%*%"; the methods generally depend on the class
of both arguments, x and y. Let’s examine the selection process for the case that the arguments
have class "dgCMatrix" and "dgeMatrix".

In this version of the package, there is no directly defined method for this pair of classes, so a search
for inherited methods takes place. The methods list representing all defined methods for "%*%" first
lists the different possible classes for x. There are 20 of these, of which 5 correspond to superclasses
of "dgCMatrix":

[1] "CsparseMatrix" "dsparseMatrix" "sparseMatrix" "Matrix" "ANY"

(in the order these would appear in the class definition for "dgCMatrix"). For each of these classes,
the methods list contains another methods list, consisting of all the possible classes for argument
y, matched with this class for argument x.

The search examines each of these sublists in the same way, comparing against the superclasses
of "dgeMatrix" this time. In the first step, for class "CsparseMatrix", there are 3 possibilities, of
which one matches a superclass of "dgCMatrix"; namely, "denseMatrix". The selection process ends
here, selecting the method with signature c("CsparseMatrix", "denseMatrix").

As it happens this is not the method of least distance. Counting generations of superclasses, the first
argument is distance 1 away and the second distance 2. Another method, for c("dsparseMatrix",

"dgeMatrix") also has distance 1 on the first argument but matches exactly on the second. (Unfor-
tunately, it was not the method the authors intended to select, so moving to version 2.4.0 required
some changes.)

11


